
Automated Software Testing as a Service

George Candea, Stefan Bucur, Cristian Zamfir
School of Computer and Communication Sciences

École Polytechnique Fédérale de Lausanne (EPFL), Switzerland

ABSTRACT
This paper makes the case for TaaS—automated software testing as
a cloud-based service. We present three kinds of TaaS: a “program-
mer’s sidekick” enabling developers to thoroughly and promptly
test their code with minimal upfront resource investment; a“home
edition” on-demand testing service for consumers to verifythe soft-
ware they are about to install on their PC or mobile device; and a
public “certification service,” akin to Underwriters Labs,that inde-
pendently assesses the reliability, safety, and security of software.

TaaSautomaticallytests software, without human involvement
from the service user’s or provider’s side. This is unlike today’s
“testing as a service” businesses, which employ humans to write
tests. Our goal is to take recently proposed techniques for auto-
mated testing—even if usable only on toy programs—and make
them practical by modifying them to harness the resources ofcom-
pute clouds. Preliminary work suggests it is technically feasible to
do so, and we find that TaaS is also compelling from a social and
business point of view.

Categories and Subject Descriptors
D.2.5 [Testing and Debugging]: Testing tools

General Terms: Reliability

1. INTRODUCTION
Software quality assurance is in dire need of substantial progress.

Software testing is resource-hungry, time-consuming, labor-inten-
sive, and prone to human omission and error. Despite massivein-
vestments in quality assurance, serious code defects are routinely
discovered after software has been released [16], and fixingthem
at so late a stage carries substantial cost [13]. Thorough testing
of large, complex software involves great effort, and the software
industry still employs relatively primitive testing techniques.

The current software business model forces software users to
take on faith that the vendor has performed thorough testingbefore
shipping. Yet, given the difficulty of thoroughly testing software,
such trust is typically misplaced. There exists no objective way
to assess the reliability of a software product, therefore the main

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
SoCC’10,June 10–11, 2010, Indianapolis, Indiana, USA.
Copyright 2010 ACM 978-1-4503-0036-0/10/06 ...$10.00.

competitive metric is often performance and functionality. There
is no independent certification body to guarantee that everyvendor
employs state-of-the-art testing.

We need a “disruptive technology” to substantially improvesoft-
ware quality. Various studies have found the average bug density in
production-ready software to have stayed relatively constant over
time, while average code volume of software has increased along
an exponential curve [13], with the net effect that the number of
bugs per product is increasing. It is therefore necessary toquickly
find a way of reducing bug density by at least an order of magni-
tude. A promising direction is to reduce reliance on human labor
through automated testing techniques, and recent proposals [4, 5,
2, 1] have made promising progress along these lines. Alas, they
are still not ready to handle real-sized software (1 millionlines of
code or more), mainly due to high CPU and memory requirements.
We believe cloud computing can come to the rescue.

The Promise of Automated Testing as a Service (TaaS)
Software testing essentially consists of exercising as many paths
through a program as possible and checking that certain properties
hold along those paths (no crashes, no buffer overflows, etc.)

TaaS combines two ideas: (1) offering software testing as a com-
petitive, easily accessibleWeb service, and (2) doing fully auto-
mated testingin the cloud, to harness vast, elastic resources toward
making automated testing practical for real software.

A software-testing Web service allows users to upload the soft-
ware of interest, instruct the service what type of testing to perform,
click a button, and then obtain a report with the results within min-
utes or hours. This report is a list of bugs found, or the levelof
coverage obtained by tests with successful outcomes. Such aser-
vice can have a basic interface, where an end user uploads, e.g.,
the latest Windows service pack and then chooses from a menu of
possible test types (e.g., comprehensive testing, security testing). A
service can also have an expert interface, to be used by software de-
velopers to provide sophisticated definitions of what “a bug” may
be, thus teaching the testing service what kinds of correctness viola-
tions to look for. For professional uses, TaaS can integratedirectly
with the development process and test the code as it is written.

We wish to empower consumers of software—both programmers
and end users—to be in control of the quality of the software they
use. Information on the bugs present in a piece of software isof-
ten (partially) known to the vendor, but not to consumers, for both
technical and business reasons. With TaaS, we aim to make this
otherwise-hidden information openly available on-demandto any-
one who wishes to obtain it. Software testing ought to be fast,
automated, and as easy and accessible as Web email.

TaaS can also serve as a publicly available certification service,
that enables comparing the reliability and safety of software prod-

1

ucts. In this way, TaaS can promote open competition among soft-
ware vendors and compel them to produce software that is reliable.

Doing automated testing in a cloud instead of on individual de-
velopers’ machines increases the available compute power by or-
ders of magnitude. In the past, faster CPUs enabled increased levels
of interactivity in development, such as quick compile-retry cycles.
Cloud-based computation, offering vast numbers of fast CPUs with
plenty of memory, could engender a similar transformation,with
TaaS becoming a seamless extension of a developer’s environment.
If automated testing techniques can be adapted to scale up oncloud
infrastructures, they can yield the order-of-magnitude lower bug
density and higher programmer productivity we seek.

Our Goal in Brief
Automated software testing, available to anyone and everyone at
low cost, can transform the current development paradigm into one
that involves more-thorough yet less-time-consuming testing. Our
end goal is for all software to be more reliable and safe. Toward this
goal, we see four fundamental research challenges: testingmust
(a) be fully automated, i.e., humans no longer write test harnesses;
(b) scale to frequently-changing code bases that exceed 1 million
lines of code; (c) be feasible as a service, i.e., useful to develop-
ers/consumers and economically viable; and (d) be able to directly
test binaries, since much software is still proprietary.

Individual software testing continues to be relevant even as SaaS
(software as a service) gains increasingly more ground. Endusers,
as well as organizations and corporations, rely on ever morethird-
party software. Software services are stitched together from large
volumes of third-party code (libraries, databases, Web servers, vir-
tual machines, etc.). Consumers install, run, and upgrade software
not only on their increasing number of computers, but also ontheir
mobile phones, audio/video players, TiVo, and cameras.

An Historical Perspective
An important turning point in improving the productivity-to-bugs
ratio was brought about by the introduction of high level languages
and compilers in the 1950s, gradually eliminating most direct use
of assembly language. Another important development was faster
hardware and compilers, which now provide programmersquick
feedbackon syntax errors and low-level programming errors dur-
ing the build process. These two events transformed programmers’
attitude toward writing code: less concern for the minor details and
more time devoted to the higher level thought process.

We expect TaaS to similarly transform the way we write code,
by providing prompt feedback on higher level programming errors
and enabling developers to spend more time thinking about system-
level properties instead of low-level details. TaaS can provide feed-
back on semantic correctness, instead of mere syntax. Quickfeed-
back on code quality during the development process enablespro-
grammers to build systems that are closer to being correct.

The compute power needed to achieve prompt feedback on deep
program properties, such as whether a particularassert()could ever
fail or not, far exceeds what is available in a mere workstation.
Cloud infrastructures make such compute power available today, if
only we had the automated test techniques to harness it.

In this paper, we make the case for TaaS, hoping to motivate
also other researchers to engage in adapting automated testing tech-
niques to the cloud. We first describe in more detail the threevari-
ants of TaaS (§2), present our initial forays into cloud-based au-
tomated testing, along with ideas for future steps (§3), make the
social and business case for TaaS (§4), describe the expected ben-
efits and drawbacks of TaaS (§5), and finally close with a list of
research challenges (§5) and conclusions (§6).

2. SOFTWARE TESTING WEB SERVICES
While the most obvious embodiment of TaaS is a service aimed

at software developers, we see TaaS reaching further: end users
themselves could use TaaS, with the same ease with which theyuse
Web email. In this section, we describe a form of TaaS aimed at
developers (§2.1), then TaaS for end users (§2.2), and finally TaaS
as a universally accessible certification service for software (§2.3).

2.1 TaaSD for Developers (“Sidekick”)
TaaSD can become a programmer’s true sidekick, i.e., an insep-

arable companion assisting the developer at every step.

Continuous Testing
In the simplest form, a TaaSD provider operates “in a loop” that
pulls the latest code from the developers’ repository. It then exer-
cises the various paths through the code and checks them against a
collection of so-called test predicates (described in moredetail be-
low). Continuous testing integrated into the development environ-
ment has been previously proposed [17] as a way to run developer-
provided test suites in the background on the developer’s worksta-
tion. In TaaSD, however, developers provide higher level specifica-
tions of what should be tested: instead of imperative test suites, they
write test predicates, which takes considerably less humantime.

This has two benefits: it places less burden on the developer,
and it allows checking much deeper properties faster, by using the
resources of the cloud. TaaSD continuous testing can improve soft-
ware reliability and shorten the development cycle by automating
test generation and finding bugs as software is being developed,
even before a test harness exists. This forces developers topro-
duce high quality code early on during development, when bugs
are cheapest to eradicate [13]. Only a cloud environment could
allow TaaSD to provide quick feedback, i.e., reduce what would
otherwise take several days down to mere minutes or seconds.

Test Predicates
Predicates over program state or control flow can succinctlychar-
acterize undesired behaviors. Test predicates can be, for example,
a more sophisticated form ofassert-like statements. They can use
abstract, symbolic program state to specify computation properties;
e.g., “if everfactorial(λ) 6= λ ∗ factorial(λ −1), that is a bug.” A
testing service smartly exercises as many execution paths through a
program as possible and checks whether there exist paths that trig-
ger these test predicates. In our simple example, TaaSD could find
concreteλ inputs for which the above predicate is true.

Test predicates fall into two categories: universal predicates and
application-specific predicates. Universal predicates are broadly
accepted as describing bugs, such as dereferencing a null pointer,
entering a deadlock, race conditions, memory safety errors, crashes.
Such predicates can be either given as declarative expressions or
encoded in write-once/use-many imperative checkers [14].Appli-
cation-specific predicates capture semantics that are particular to
the tested program (e.g.,numConnections> maxPoolSize+delta).
For every predicate violation, TaaSD produces a set of inputs, envi-
ronment conditions, and sequence of program events that develop-
ers can use to reproduce the corresponding bug [18].

Application-specific test predicates often come to one’s mind
while coding. Such properties cannot always be captured in alo-
cal assert()statement in the code, but rather require a more global
predicate over program behavior. Should the scope of a predicate
need to be restricted to a portion of the code, it can be done by
incorporating a range of line numbers in the predicate itself.

We envision allowing developers to write these test predicates
and upload them into a database at the TaaSD provider. They could

2

be uploaded manually via a Web interface, or be provided directly
from within the IDE (e.g., Eclipse or Microsoft Visual Studio).

We believe that test predicates, although not suitable for express-
ing absolutely all bugs, can be used for many classes of bugs.While
bugs can relate to arbitrarily complex semantics, many of the bugs
that plague today’s software are buffer overflows and other memory
errors, crashes, integer overflows, race conditions, deadlocks, etc.
all of which can be easily encoded in test predicates. For most bugs
that violate higher level program semantics,assert-style predicates
over the global program state are also sufficient. For the remaining
types of bugs, there exist more sophisticated forms of expressing
them, such as formal logics that capture temporal properties, or, as
a last resort, imperative test programs.

TaaSD provides an entire spectrum of solutions to developers:
they can rely solely on the fully automated discovery of bugsthat
can be detected by universal predicates, or they can providetheir
own test predicates or imperative test suites. The benefit ofTaaSD
is that it uses the resources of the cloud to run this predicate check-
ing on many more execution paths than would be feasible in the
developer’s own infrastructure. In this sense, TaaS complements
advances in programming languages—strong type systems, for ex-
ample, prevent developers from making low-level mistakes,while
TaaS helps check the next-higher level of bugs.

We plan to run TaaSD as a “public service” for open-source soft-
ware developers. This effort could make open-source code the most
reliable software available. For such a public service, we expect
the user and developer community to be willing to contributede-
tailed test predicates to a Wikipedia-style database. To this end,
we are building a system, called Cloud9, which promises to scale
symbolic execution [10]—a popular test automation technique—to
large clusters of machines. Preliminary results [3] show substan-
tial speedup over a single-node state-of-the-art symbolicexecution
engine when testing real UNIX utilities. The key techniquesunder-
lying Cloud9 are summarized in §3.

2.2 TaaSH for End Users (“Home Edition”)
TaaSD helps develop more reliable software, which makes end

users happier. But can TaaSdirectly benefit end users? Yes, it can.
Consider the following scenario: Mrs. X, a grandmother who

lives by herself, owns a computer and a mobile phone. She relies
on the mobile phone to notify her children (who live in the same
city) whenever she experiences the symptoms that often precede
her seizures. The software on her mobile phone recently notified
her that it needs to be upgraded, to improve the speech recognition
component. Mr. X knows that such upgrades are perilous, and that
a buggy upgrade may disable her phone altogether. At the same
time, improved speech-to-text would help the phone better handle
her aging voice. Mrs. X is the kind of user who can benefit from a
“home edition” version of TaaS, which we refer to as TaaSH.

The key difference between TaaSH and TaaSD is the service in-
terface and the presentation/interpretation of results. Developers
can be expected to write test predicates, but end users cannot. Thus,
whereas TaaSD checks for both universal and application-specific
test predicates, TaaSH only checks for universal predicates.

We expect end users to employ testing services in a “one-off”
manner, unlike developers who will likely prefer continuous test-
ing. Thus, TaaSH has a public website where consumers can up-
load software in binary or bytecode form and select from a pull-
down menu the type of testing they want. Using this testing service
should be no more complex than downloading software from the
Web. By default, TaaSH may check programs for bugs like buffer

overflows, deadlocks, or race conditions, but the TaaSH provider is
free to tap into additional databases of test predicates.

Within minutes, the TaaSH service produces a webpage with the
results of the tests, indicating whether it found any serious bugs,
such as hangs or crashes. A bug is automatically rated as serious vs.
minor based on the corresponding test predicate, itself rated by the
TaaSH provider or the predicate writer. Mrs. X allows the phone to
update itself only if the test report says no serious bugs were found.
For interested users, the TaaSH response may include a rating of
the software, akin to stars for products on e-tailers’ websites.

This service would cost Mrs. X no more than a few cents, or even
be freely included in her monthly phone subscription. Even though
the TaaSH provider commissions a few dozen machines for several
minutes to run the test, this cost can be amortized across multiple
users: if this same upgrade has already been tested before, the re-
sponse to Mrs. X can be immediate and cost the provider virtually
nothing. As will be seen later, TaaS offers attractive opportunities
for economies of scale, especially for widely used software.

Since TaaSH emphasizes simplicity, it only checks for a set of
“canned” bad behaviors, such as memory safety bugs or deadlocks.
Community efforts, however, are likely to produce additional test
predicates, in the spirit of Wikipedia or Knol [7], perhaps based on
bug reports filed in the past. Such a database of test predicates could
then be tapped by a TaaSH provider for the benefit of its users.

The TaaSH scenario presented here is not far-fetched. We have
built a tool, called DDT [11], for testing closed-source binary de-
vice drivers against undesired behaviors, like race conditions, mem-
ory errors, resource leaks, etc. DDT combines virtualization with
a specialized form of symbolic execution to thoroughly exercise
tested drivers; a set of modular dynamic checkers use test predi-
cates to identify bug conditions. In preliminary experiments, DDT
tested six mature Windows-certified closed-source binary drivers
for less than 5 minutes each and found 14 different serious bugs.
DDT produces executable traces for every path that leads to afail-
ure, thus proving the existence of the bugs and helping developers
debug them. The test predicates used in DDT were extracted from
the Microsoft Driver Verifier [14], shipped with Windows, plus a
few new ones added by us.

While TaaSH does not offer much flexibility, it is still a com-
pelling service for end users like Mrs. X, who otherwise would
have to blindly trust software vendors.

2.3 TaaSC Certification Services
The third type of TaaS is a public certification service, which

provides an objective assessment of a software product’s quality.
A primitive form of certification is already gaining hold in the in-
dustry, as in the case of Microsoft’s Hardware Quality Labs testing
of third-party software, or Apple’s certification process for listing
applications in its App Store. TaaSC analyzes software (either in
binary or source code form) and, for each defect found, provides
irrefutable evidence of the defect. Based on the defect density,
TaaSC can provide a rating for each product. For an industry to
compete on a certain product attribute, that attribute mustbe easily
explained and quantified for consumers. It is for this reasonthat
software companies compete on performance (measurable through
benchmarks) and on features (measurable via check lists). We be-
lieve this is also the reason for which the software industryhas not
started yet seriously competing on reliability, safety, and security.

In proposing a software certification service, we draw inspiration
from Underwriters Laboratories Inc. (UL), an independent product
safety certification organization in the USA. UL has had a univer-
sally recognized positive effect on the manufacturing industry, en-
couraging the adoption of important safety measures.

3

TaaSC is meant to be the Underwriters Labs of the software in-
dustry. Similar to UL, the certification service tests and then certi-
fies (by digitally signing) the tested software—this is the equivalent
of the UL Mark. The TaaSC provider can be funded by govern-
ments, by industry consortia, or simply provide certification ser-
vices for pay. It can offer different levels of certification, depend-
ing on the types of predicates that are checked. When a product is
modified, it needs to be re-tested and re-certified. In an ideal fu-
ture, software companies will be required to subject their software
to quality validation on such a service, akin to mandatory crash
testing of vehicles. In the absence of such certification, software
companies could be held liable for damages resulting from bugs.

An officially sanctioned TaaSC provider maintains a Web-acces-
sible directory of the software products it tested and certified; this
list can be used by consumers to compare products. Certification,
of course, does not guarantee the product will perform acceptably
or that it is safe under all conditions (such as misuse), but it pro-
vides an increased level of assurance. Being certified wouldnot
carry legal weight (as does, for instance, the European CE Mark or
the FCC Part 15 requirement for electronic devices), but we expect
that it would become difficult in practice to sell software that does
not carry such a certification. IT consulting firms may be unwilling
to install uncertified products, use of uncertified softwaremay in-
validate certain insurance coverages, and governmental authorities
could require contractors to use exclusively certified software.

In addition to certification, a TaaSC provider could also pub-
lish sorely needed statistics on software: Which bugs are the most
prevalent? What is their frequency? What is the typical bug density
for each class of applications? Such data would help everyone do-
ing research on reliability (systems, databases, programming lan-
guages, etc.), the same way surveys and studies help the medical
profession and the pharmaceutical industry. It would enable the de-
velopment of more scientific and rigorous approaches to software
development, grounded in concrete data.

3. INFRASTRUCTURE AND SOFTWARE
Automated testing relieves humans from the task of writing test

cases and workload drivers. For such a testing technique to be fea-
sible for TaaS, it must be able to control program execution,so that
it takes the program through as many different execution paths as
possible, and be able to automatically recognize undesiredbehav-
ior along those paths, i.e., find bugs. Even if a technique cannot
determine 100% that a system is bug-free, by exploring substan-
tially more execution paths than what a human-written test could
do constitutes a valuable service for developers and end users.

There are several ways to construct such automated testing ser-
vices. In our work, we use a technique called symbolic execu-
tion [10] combined with test predicates. We are working on paral-
lelizing symbolic execution on large, elastic clusters of machines,
in order to allow it to scale up to realistically sized programs. Other
techniques, such as structured input generation [15], thatcan run in
parallel on shared-nothing clusters, can also be deployed in TaaS.

Classic Symbolic Execution
Symbolic execution is a technique for automated testing, originally
proposed in the 1970s. It has recently been shown to find (with
no human assistance) bugs that were missed by manual testingand
static analysis [4, 6, 12, 1]. Instead of running the programwith
regular inputs, a symbolic execution engine runs the program with
abstract, symbolic inputs that are unconstrained, e.g., aninteger
input x is given as value a symbolλ that can take on any integer
value. When the program encounters a branch that depends onx,
program state is forked to produce two parallel executions,one fol-

void write(int p){

 if (p < MAX) {

 if (p > 0)

 ...

 else {

 ...

 }

 } else {

 if (p > 3)

 close(p);

 else {

 ...

 ...

p<MAX

p>3 p>0

TrueFalse

TrueFalse TrueFalse

False

False

False

True

True

Figure 1: Symbolic execution tree for an example body of code.

lowing the then-branch and another following the else-branch. The
symbolic values are constrained in the two execution clonesso as to
make the branch condition evaluate to true (e.g.,λ<0), respectively
false (e.g.,λ≥0). Execution recursively splits into sub-executions
at each relevant branch, turning an otherwise linear execution into
an execution tree that captures all possible executions (Figure 1).

Symbolic execution consists of systematically exploring this ex-
ecution tree. Each inner node is a branching decision, and each
leaf is a program state that contains its own address space, program
counter, and set of constraints on program variables.

When an execution encounters a bug, as defined by a test pred-
icate, the conjunction of constraints collected from the root to the
goal leaf is solved to produce concrete program inputs that exercise
the path to the bug. In addition to these constraints, program events
(such as thread context switches) must be factored in, as illustrated
in our execution synthesis system [18]. Herein lies the strength of
symbolic execution: it can automatically generate test cases that
evidence bugs. Symbolic execution is substantially more efficient
than exhaustive input-based testing—it analyzes code behavior for
entire classes of inputs/events at a time, without having totry each
one out—yet is at least as complete.

Unfortunately, symbolic execution faces two serious challenges:
high memory consumptionandCPU-intensive constraint solving,
both of which are roughly exponential in program size. Memory
consumption results from the large (potentially infinite) symbolic
execution tree. CPU consumption results from the fact that,at
each branch instruction, the symbolic execution engine must check
which of the branches are feasible, given the current constraints.
Consequently, on a present-day computer it is only possibleto thor-
oughly test programs with a few thousand lines of code; for larger
programs, only the shorter paths can be explored. Thus, symbolic
execution is virtually unheard of in the general-purpose software
industry because real programs often have millions of linesof code,
and executing them symbolically on a single node is not practical.

Symbolic Execution in the Cloud
We are building Cloud9, aparallel symbolic execution engine to
run on large shared-nothing clusters of computers, thus harnessing
their aggregate memory and CPU resources. In this way, we can
mitigate the memory and CPU bottleneck of symbolic execution.

Parallelization is a natural way to improve the scalabilityof sym-
bolic execution, but doing so in a cluster presents significant chal-
lenges. Furthermore, in a cloud setting, parallel symbolicexecution
requires coping with frequent fluctuation in resource quality, avail-
ability, and cost, which are not present in regular clusters.

Cloud9 consists of many worker nodes and one or more coor-
dinator nodes. Each worker independently explores a subtree of

4

the program’s execution tree by running one classic symbolic ex-
ecution engine and a constraint solver on each CPU core. As it
explores paths, Cloud9 checks whether any bug predicates are true.

The choice of which branches to pursue first is governed by a so-
called search strategy. In the cloud version of symbolic execution,
instead of using a single strategy, we simultaneously employ a port-
folio of multiple strategies. This allows the exploration to speculate
on the promise of certain paths, taking advantage of the factthat
speculation requires solely employing a few additional machines.
Our preliminary results indicate that diversification of exploration
strategies can help find sooner the paths leading to a desiredtest
goal (such as maximizing code coverage, testing the bounds of all
string copy operations, etc.) [3]. This is particularly relevant for
symbolic execution trees of infinite size.

One key aspect of making Cloud9 scale to large clusters is per-
forming efficient load balancing at infrequent time intervals. The
coordinator reasons about which parts of the execution treeought
to be transferred between workers to distribute load evenly. Cloud9
employs a discrete job model that allows workers to self-regulate,
thus requiring the intervention of the coordinator relatively rarely.
To balance load, workers exchange compact encodings of treenodes
and quickly reconstruct the state of the migrated node, without hav-
ing to copy potentially hundreds of MB/state across the network.

Another important aspect is the quality of the program stateen-
coding. Since most cloud clusters employ commodity networkin-
terconnects, transferring explicit states over the network often turns
into a bottleneck (which is one of the reasons why parallel model
checkers have a hard time running on clusters without sharedmem-
ory). Additionally, we are developing techniques for reducing re-
dundancy, handling worker failures, and coping with heterogeneity.

Since symbolic execution is a dynamic testing technique, ithas
no false positives. This means that bugs found by a TaaS service are
legitimate bugs accompanied by inputs and a set of system events
that help reproduce them. A recent study [8] showed that lackof
false positives and the ability to reproduce bugs not only aids but
also compels software developers to fix bugs sooner.

When testing software that depends on hardware features, as
is the case of device drivers or a mobile phone operating system,
it may appear necessary for the TaaS provider to employ hard-
ware simulators. However, this challenge can be circumvented with
symbolic hardware. DDT [11] showed that this approach requires
neither real hardware nor hardware models to test device drivers—
instead, symbolic hardware returns symbolic values to the software,
thus testing it against all possible reactions of the hardware.

Infrastructure
We expect TaaS providers to either operate their own data centers,
or provide TaaS as a value-added service on top of a public cloud
operated by a third party, such as Amazon EC2.

TaaS in public clouds is an ideal solution for small and medium
companies, which cannot afford the upfront investment of setting
up large clusters of machines. Moreover, even for large compa-
nies that do have their own clusters, TaaS can provide a way toac-
commodate spikes in their resource needs (“cloud bursting”), such
as may be required during intensive test cycles prior to a release.
Finally, TaaS can provide an incremental path to gradually move
testing from in-house under-provisioned clusters into thecloud.

Besides public clouds, there are two other available variants:
private clouds and cooperative clouds. A private cloud may be
preferred by large companies that have vast hardware resources
they can dedicate to internal use (e.g., Google, Microsoft). A co-
operative test cloud is a federation of user machines (similar to
SETI@home) or even data centers, pooled together for shareduse.

4. THE ECONOMICS OF TaaS
We believe TaaS can be operated in a sustainable manner both

as a public service and as a business. In this section we arguethat
there exists a market for automated test services, we suggest a pos-
sible pricing scheme, and finally describe how TaaS providers (both
public and commercial) can benefit from economies of scale.

Like most Web services, TaaS will first attract the “long tail” of
potential users; in this case, it would be those who cannot justify in-
vesting in testing infrastructures, or those who wish to cloud-burst
during periods of intense testing. Small and medium businesses,
as well as open-source software developers, will likely be the first
users. TaaS puts at their disposal a testing service on par with (or
better than) what the largest software companies have, thuslevel-
ling the playing field. Large companies that already own private
clouds can run TaaS as an internal service.

Commercial TaaS providers will have to identify good pricing
schemes. Ideally, customers pay proportionally with the value they
derive from the testing task they submit to the service. Thisvalue
can be expressed as a function of the number and importance of
the bugs found and/or the confidence that the user gets in the code.
Confidence can be expressed in terms of code coverage or path
coverage, both of which can easily be measured by the testingser-
vice. Alternatively, one may wish to pay per bug found or per unit
of coverage increase—in these cases, the marginal value increases
over time. For example, achieving an extra 1% coverage on code
that is already 95% covered is more valuable than if the starting
coverage was only 60%. This telescoping marginal value matches
well the increased resources (and thus higher cost for the TaaS op-
erator) required to achieve that target.

TaaS users can provide a target level of desired coverage and/or
an upper limit on the budget, and the testing service can optimize
accordingly. Since the service provider can allocate resources elas-
tically across its customers, the resource demands of each testing
task can be optimized globally across all in-progress test jobs.

For price-sensitive customers, auction-style pricing schemes may
be advantageous: depending on how much the user is willing to
pay, more or fewer resources can be commissioned in the cloud
for that user’s task. The difference in price may be reflectedin the
total time required to test a piece of software, taking longer if it
uses fewer resources, perhaps even being suspended for somepe-
riod of time when there is high demand for resources from other
higher-paying customers. Such a mechanism is a good match for
auction-based clouds, like Amazon’s EC2 Spot Instances, where
unused cluster nodes can be employed at very low cost. Perhaps
cloud operators will be willing to donate resources to a public ver-
sion of TaaS, during periods of low utilization.

TaaS providers benefit from economies of scale. First, users
are likely to end up testing common bodies of code, like popu-
lar libraries (e.g, many Java programs will use the same JDK). The
TaaS provider can exploit this redundancy by not re-testingalready-
tested code, and thus saving resources. The more users a service
has, the more exploitable redundancy there will be. Moreover, the
provider may choose to test popular bodies of code in advance, dur-
ing periods when its resources are not in high demand. The initial
cost of testing can then be amortized over all the customers who
will need those results later on.

Finally, TaaS may introduce new business opportunities. For ex-
ample, rigorous testing can make it feasible to offer software war-
ranties, which translate into liability payments to the software user
in case bugs lead to losses. Such warranties could be backed by
insurance products from financial institutions, which would offer
software developers an insurance policy in exchange for a premium
and a requirement that they use TaaS on their code.

5

5. IMPACT AND CHALLENGES
We expect TaaS to have broad impact on end users, developers,

and businesses, leading to higher software reliability in general.
TaaS can both compel and help development organizations to

compete based on the reliability of their software products. Certi-
fication services provide easily accessible means for consumers to
compare product reliability, while testing services help developers
write better software. The ease of identifying and reproducing bugs
will also shorten the interval between detection and final bug fix.

At the same time, testing services empower end users to check
the software they use. Well informed and demanding users will
further exert pressure on vendors to produce reliable software. Val-
idation of software could become a built-in feature of operating sys-
tems, that transparently checks all new software via a TaaS provider.

The fact that competitors and hackers could use TaaS to find
weaknesses in a software product as soon as it is released should
compel developers to use TaaS before releasing their software.

On the path to TaaS, there are both technical and non-technical
challenges. The first and foremost is finding ways to scale auto-
matic testing techniques to hundreds or thousands of machines in
loosely coupled clusters. While progress has been made, forexam-
ple, in parallelizing model checkers for multi-core CPUs [9], the
reliance on shared memory makes the techniques difficult to carry
over to clusters. Furthermore, cloud environments presentsubstan-
tial heterogeneity and unpredictability of performance.

Finding incremental testing techniques, which reuse existing test
results and compose them with tests focused on new or modified
code, can enable TaaSD to provide quicker feedback to developers.
There is also opportunity for techniques that provide progressive
refinement of the test results, so that a coarse grained result can
be returned immediately, followed by increasingly more precise re-
sults, as they become available.

For test predicates to be easy to formulate and maintain, we must
design a language that provides a suitable tradeoff betweenex-
pressiveness and complexity. Formal logics are powerful, but have
proven to be inaccessible to most programmers. Asserts stated di-
rectly in the programming language are easy, but less powerful. A
middle ground between the two will likely prove the most fruitful.

We need metrics for quantifying the level of confidence we get
from a test suite. Common coverage metrics, such as line cover-
age, do not accurately describe how many of the possible execution
paths have been tested. At the same time, an absolute number indi-
cating the number of paths tested is not informative either,and path
coverage can rarely be expressed as a percentage, since complex
programs almost always have an infinite number of possible paths.

We expect much of the testing in TaaS to be done on binaries,
rather than source code. Both Cloud9 and DDT can operate on bi-
naries as well as on source. However, software vendors may be
reluctant to allow end users to check the quality of proprietary soft-
ware using TaaS—they might prevent this through code packing
or through licensing terms. It is not clear whether TaaS providers
would need to have a license for the software they are about totest.
Moreover, exhaustively exercising code paths in binaries may be
considered illegal reverse engineering by some vendors, although
user demand for reliable software may change that perspective.

Finally, providing confidentiality of tested code may also be a
challenge. While this is not necessary in the case of binaries, pro-
prietary source code will need to be kept confidential by either run-
ning TaaS in a private cluster, or by providing strong guarantees and
legal provisions if doing so on a shared cloud. There can alsobe
concerns regarding export restrictions, if sensitive software, such
as cryptographic algorithms, ends up being tested by services oper-
ating in countries where that code cannot be legally exported to.

6. CONCLUSION
In this paper we made the case for TaaS—automated software

testing as a cloud-based service. We presented three classes of test-
ing services: TaaSD for developers to more thoroughly test their
code, TaaSH for end users to check the software they install, and
TaaSC certification services that enable consumers to choose among
software products based on the products’ measured reliability.

We argued that the combination of recent advances in test au-
tomation and the availability of compute clouds can offer unprece-
dented levels of testing quality. We find TaaS to be compelling
from both technical and non-technical points of view. By simulta-
neously empowering consumers to make educated choices and also
enabling developers to build better products, TaaS has the ingredi-
ents to indeed help reduce bug density by an order of magnitude.

7. REFERENCES
[1] C. Cadar, D. Dunbar, and D. R. Engler. KLEE: Unassisted

and automatic generation of high-coverage tests for complex
systems programs. InSymp. on Operating Systems Design
and Implementation, 2008.

[2] C. Cadar, V. Ganesh, P. M. Pawlowski, D. L. Dill, and D. R.
Engler. EXE: Automatically generating inputs of death. In
Conf. on Computer and Communication Security, 2006.

[3] L. Ciortea, C. Zamfir, S. Bucur, V. Chipounov, and
G. Candea. Cloud9: A software testing service. InWorkshop
on Large Scale Distributed Systems and Middleware, 2009.

[4] P. Godefroid, N. Klarlund, and K. Sen. DART: Directed
automated random testing. InConf. on Programming
Language Design and Implementation, 2005.

[5] P. Godefroid, M. Y. Levin, and D. Molnar. Automated
whitebox fuzz testing. Technical Report MSR-TR-2007-58,
Microsoft Research, 2007.

[6] P. Godefroid, M. Y. Levin, and D. Molnar. Automated
Whitebox Fuzz Testing. InNetwork and Distributed System
Security Symp., 2008.

[7] Google Knol. http://knol.google.com.
[8] P. J. Guo and D. Engler. Linux kernel developer responsesto

static analysis bug reports. InUSENIX Annual Technical
Conf., 2009.

[9] G. J. Holzmann and D. Bosnacki. Multi-core model checking
with SPIN. InIntl. Parallel and Distributed Processing
Symp., 2007.

[10] J. C. King. Symbolic execution and program testing.
Communications of the ACM, 1976.

[11] V. Kuznetsov, V. Chipounov, and G. Candea. Testing
closed-source binary device drivers with DDT. InUSENIX
Annual Technical Conf., 2010.

[12] R. Majumdar and K. Sen. Hybrid concolic testing. InIntl.
Conf. on Software Engineering, 2007.

[13] S. McConnell.Code Complete. Microsoft Press, 2004.
[14] Microsoft. Driver verifier.

http://www.microsoft.com/whdc/DevTools/tools, 2009.
[15] S. Misailovic, A. Milicevic, N. Petrovic, S. Khurshid,and

D. Marinov. Parallel test generation and execution with
Korat. InSymp. on the Foundations of Software Eng., 2007.

[16] Redhat security.
http://www.redhat.com/security/updates/classification, 2005.

[17] D. Saff and M. D. Ernst. Reducing wasted development time
via continuous testing. InIntl. Symp. on Software Reliability
Engineering, 2003.

[18] C. Zamfir and G. Candea. Execution synthesis: A technique
for automated debugging. InEUROSYS Conf., 2010.

6

