Automated Software Testing as a Service

George Candea, Stefan Bucur, Cristian Zamfir
School of Computer and Communication Sciences
Ecole Polytechnique Fédérale de Lausanne (EPFL), Switrdrl

ABSTRACT

This paper makes the case for TaaS—automated softwaregtesti
a cloud-based service. We present three kinds of TaaS: grgre
mer’s sidekick” enabling developers to thoroughly and potyn
test their code with minimal upfront resource investmerthane
edition” on-demand testing service for consumers to vehié/soft-
ware they are about to install on their PC or mobile devicet @n
public “certification service,” akin to Underwriters Lalibat inde-
pendently assesses the reliability, safety, and securggfovare.
TaaSautomaticallytests software, without human involvement
from the service user’s or provider’s side. This is unlikdag's
“testing as a service” businesses, which employ humans ite wr
tests. Our goal is to take recently proposed techniquesuim- a

mated testing—even if usable only on toy programs—and make

them practical by modifying them to harness the resourcesmf
pute clouds. Preliminary work suggests it is technicalBsible to

do so, and we find that TaaS is also compelling from a social and

business point of view.

Categories and Subject Descriptors
D.2.5 [Testing and DebuggifgTesting tools

General Terms Reliability

1. INTRODUCTION

Software quality assurance is in dire need of substantigress.
Software testing is resource-hungry, time-consumingoratiten-
sive, and prone to human omission and error. Despite maissive
vestments in quality assurance, serious code defects atiaetly
discovered after software has been released [16], and fiRieg
at so late a stage carries substantial cost [13]. Thorougfinte
of large, complex software involves great effort, and thitveare
industry still employs relatively primitive testing tedijnes.

The current software business model forces software users t
take on faith that the vendor has performed thorough tebifigre
shipping. Yet, given the difficulty of thoroughly testingfeeare,
such trust is typically misplaced. There exists no objectiay
to assess the reliability of a software product, therefogerhain

Permission to make digital or hard copies of all or part o twork for

personal or classroom use is granted without fee providatidbpies are
not made or distributed for profit or commercial advantage that copies
bear this notice and the full citation on the first page. Toyoofherwise, to
republish, to post on servers or to redistribute to listguies prior specific
permission and/or a fee.

SoCC’10,June 10-11, 2010, Indianapolis, Indiana, USA.

Copyright 2010 ACM 978-1-4503-0036-0/10/06 ...$10.00.

competitive metric is often performance and functionalifihere
is no independent certification body to guarantee that exemgor
employs state-of-the-art testing.

We need a “disruptive technology” to substantially impreoé-
ware quality. Various studies have found the average busgityen
production-ready software to have stayed relatively @rtsbver
time, while average code volume of software has increasmtyal
an exponential curve [13], with the net effect that the nurrdfe
bugs per product is increasing. It is therefore necessaguitkly
find a way of reducing bug density by at least an order of magni-
tude. A promising direction is to reduce reliance on humdoia
through automated testing techniques, and recent prapptab,

2, 1] have made promising progress along these lines. Alay, t
are still not ready to handle real-sized software (1 millioes of
code or more), mainly due to high CPU and memory requirements
We believe cloud computing can come to the rescue.

The Promise of Automated Testing as a Service (TaaS)

Software testing essentially consists of exercising asynpaths
through a program as possible and checking that certairepiep
hold along those paths (no crashes, no buffer overflows, etc.

TaaS combines two ideas: (1) offering software testing asva c
petitive, easily accessibM/eb serviceand (2) doing fully auto-
mated testingn the cloud to harness vast, elastic resources toward
making automated testing practical for real software.

A software-testing Web service allows users to upload tlfie so
ware of interest, instruct the service what type of testinggrform,
click a button, and then obtain a report with the results iwithin-
utes or hours. This report is a list of bugs found, or the lefel
coverage obtained by tests with successful outcomes. Seeh a
vice can have a basic interface, where an end user uploags, e.
the latest Windows service pack and then chooses from a nfenu o
possible test types (e.g., comprehensive testing, sgtesiting). A
service can also have an expert interface, to be used byaseftie-
velopers to provide sophisticated definitions of what “a’bugy
be, thus teaching the testing service what kinds of coresstmiola-
tions to look for. For professional uses, TaaS can integhiatetly
with the development process and test the code as it is writte

We wish to empower consumers of software—both programmers
and end users—to be in control of the quality of the softwhey t
use. Information on the bugs present in a piece of softwaof-is
ten (partially) known to the vendor, but not to consumers pfath
technical and business reasons. With TaaS, we aim to make thi
otherwise-hidden information openly available on-demendny-
one who wishes to obtain it. Software testing ought to be, fast
automated, and as easy and accessible as Web email.

TaaS can also serve as a publicly available certificatiovicear
that enables comparing the reliability and safety of sofeaarod-

ucts. In this way, TaaS can promote open competition amoftg so
ware vendors and compel them to produce software that abieli

Doing automated testing in a cloud instead of on individweal d
velopers’ machines increases the available compute power-b
ders of magnitude. In the past, faster CPUs enabled inaiéasss
of interactivity in development, such as quick compileyrelycles.
Cloud-based computation, offering vast numbers of fast ©Rith
plenty of memory, could engender a similar transformatioith
TaaS becoming a seamless extension of a developer’s eméran
If automated testing techniques can be adapted to scale cipuch
infrastructures, they can yield the order-of-magnitudeeio bug
density and higher programmer productivity we seek.

Our Goal in Brief

Automated software testing, available to anyone and everya
low cost, can transform the current development paradigondne
that involves more-thorough yet less-time-consumingrigstOur
end goal is for all software to be more reliable and safe. Tdwfss
goal, we see four fundamental research challenges: testusj
(a) be fully automated, i.e., humans no longer write teshésses;
(b) scale to frequently-changing code bases that exceedlibrmi
lines of code; (c) be feasible as a service, i.e., useful telde-
ers/consumers and economically viable; and (d) be abler¢atti
test binaries, since much software is still proprietary.

Individual software testing continues to be relevant eve8a@aS
(software as a service) gains increasingly more ground.useds,
as well as organizations and corporations, rely on ever riionm-
party software. Software services are stitched togettoan farge
volumes of third-party code (libraries, databases, Webessy vir-
tual machines, etc.). Consumers install, run, and upgrefeare
not only on their increasing number of computers, but alstheir
mobile phones, audio/video players, TiVo, and cameras.

An Historical Perspective

An important turning point in improving the productivitg-bugs
ratio was brought about by the introduction of high leveljaages
and compilers in the 1950s, gradually eliminating mostditee

of assembly language. Another important development wstsrfa
hardware and compilers, which now provide programnugrisk
feedbackon syntax errors and low-level programming errors dur-
ing the build process. These two events transformed prageasi
attitude toward writing code: less concern for the minoadsand
more time devoted to the higher level thought process.

We expect TaaS to similarly transform the way we write code,
by providing prompt feedback on higher level programmingesr
and enabling developers to spend more time thinking abetesy
level properties instead of low-level details. TaaS cawigmfeed-
back on semantic correctness, instead of mere syntax. @aeck
back on code quality during the development process enphbes
grammers to build systems that are closer to being correct.

2. SOFTWARE TESTING WEB SERVICES

While the most obvious embodiment of TaaS is a service aimed
at software developers, we see TaaS reaching further: erd us
themselves could use TaaS, with the same ease with whiclusieey
Web email. In this section, we describe a form of TaaS aimed at
developers (82.1), then TaaS for end users (82.2), andyfinadS
as a universally accessible certification service for safen(§2.3).

2.1 Taa$ for Developers (“Sidekick”)

Taa$ can become a programmer’s true sidekick, i.e., an insep-
arable companion assisting the developer at every step.

Continuous Testing

In the simplest form, a TagSprovider operates “in a loop” that
pulls the latest code from the developers’ repository. éntlexer-
cises the various paths through the code and checks themsagai
collection of so-called test predicates (described in ndetail be-
low). Continuous testing integrated into the developmeniren-
ment has been previously proposed [17] as a way to run dexelop
provided test suites in the background on the developern&sta-
tion. In Taagp, however, developers provide higher level specifica-
tions of what should be tested: instead of imperative teégtstthey
write test predicates, which takes considerably less huimsn

This has two benefits: it places less burden on the developer,
and it allows checking much deeper properties faster, hygusie
resources of the cloud. Tag$ontinuous testing can improve soft-
ware reliability and shorten the development cycle by auattimy
test generation and finding bugs as software is being dese]op
even before a test harness exists. This forces developgnoio
duce high quality code early on during development, whersbug
are cheapest to eradicate [13]. Only a cloud environmenidcou
allow Taa$ to provide quick feedback, i.e., reduce what would
otherwise take several days down to mere minutes or seconds.

Test Predicates

Predicates over program state or control flow can succirttyr-
acterize undesired behaviors. Test predicates can bexdonge,
a more sophisticated form efsertlike statements. They can use
abstract, symbolic program state to specify computatiopeities;
e.g., “if everfactorial(A) # A «factorial(A — 1), that is a bug.” A
testing service smartly exercises as many execution pgathsgh a
program as possible and checks whether there exist pattisigha
ger these test predicates. In our simple example, Jaaald find
concrete) inputs for which the above predicate is true.

Test predicates fall into two categories: universal pragis and
application-specific predicates. Universal predicatestapadly
accepted as describing bugs, such as dereferencing a mtépo
entering a deadlock, race conditions, memory safety ercoashes.
Such predicates can be either given as declarative expnsssr
encoded in write-once/use-many imperative checkers [Agpli-

The compute power needed to achieve prompt feedback on deepcation-specific predicates capture semantics that arecylart to

program properties, such as whether a particagaert()could ever
fail or not, far exceeds what is available in a mere workstati
Cloud infrastructures make such compute power availallaytaf
only we had the automated test techniques to harness it.

In this paper, we make the case for TaaS, hoping to motivate

also other researchers to engage in adapting automatiw) tiesth-
niques to the cloud. We first describe in more detail the thagke
ants of TaaS (82), present our initial forays into cloudeohau-
tomated testing, along with ideas for future steps (83), anthle
social and business case for TaaS (84), describe the expate
efits and drawbacks of TaaS (85), and finally close with a list o
research challenges (85) and conclusions (86).

the tested program (e.gqauymConnections- maxPoolSize- deltd).
For every predicate violation, Tagproduces a set of inputs, envi-
ronment conditions, and sequence of program events thatagev
ers can use to reproduce the corresponding bug [18].
Application-specific test predicates often come to one’sadmi
while coding. Such properties cannot always be capturedidn a
cal assert()statement in the code, but rather require a more global
predicate over program behavior. Should the scope of agatdi
need to be restricted to a portion of the code, it can be done by
incorporating a range of line numbers in the predicatefitsel
We envision allowing developers to write these test predia
and upload them into a database at the paa®vider. They could

be uploaded manually via a Web interface, or be providecttijre
from within the IDE (e.g., Eclipse or Microsoft Visual Stali

We believe that test predicates, although not suitablexjoress-
ing absolutely all bugs, can be used for many classes of bMpge
bugs can relate to arbitrarily complex semantics, many ebilgs
that plague today’s software are buffer overflows and ottemory
errors, crashes, integer overflows, race conditions, deksl| etc.
all of which can be easily encoded in test predicates. Fot mas
that violate higher level program semantiassertstyle predicates
over the global program state are also sufficient. For theiing
types of bugs, there exist more sophisticated forms of esjng
them, such as formal logics that capture temporal profeie as
a last resort, imperative test programs.

Taa$ provides an entire spectrum of solutions to developers:
they can rely solely on the fully automated discovery of btgs
can be detected by universal predicates, or they can prokaie
own test predicates or imperative test suites. The beneTiha%
is that it uses the resources of the cloud to run this preslicia¢ck-
ing on many more execution paths than would be feasible in the
developer’s own infrastructure. In this sense, TaaS com@hts
advances in programming languages—strong type systemesfo
ample, prevent developers from making low-level mistakésl|e
TaasS helps check the next-higher level of bugs.

We plan to run TaaSas a “public service” for open-source soft-
ware developers. This effort could make open-source calmtst
reliable software available. For such a public service, waeet
the user and developer community to be willing to contritdee
tailed test predicates to a Wikipedia-style database. Eoehd,
we are building a system, called Cloud9, which promises abesc
symbolic execution [10]—a popular test automation techeigto
large clusters of machines. Preliminary results [3] shobstan-
tial speedup over a single-node state-of-the-art symleskécution
engine when testing real UNIX utilities. The key techniquesder-
lying Cloud9 are summarized in §3.

2.2 Taa% for End Users (“Home Edition”)

Taa$ helps develop more reliable software, which makes end
users happier. But can Taa8ectly benefit end users? Yes, it can.

Consider the following scenario: Mrs. X, a grandmother who
lives by herself, owns a computer and a mobile phone. Shesreli
on the mobile phone to notify her children (who live in the sam
city) whenever she experiences the symptoms that ofteregeec
her seizures. The software on her mobile phone recentlyieubti
her that it needs to be upgraded, to improve the speech rigioogn
component. Mr. X knows that such upgrades are perilous,tzatd t

overflows, deadlocks, or race conditions, but the Tap®vider is
free to tap into additional databases of test predicates.

Within minutes, the Tag$service produces a webpage with the
results of the tests, indicating whether it found any seribugs,
such as hangs or crashes. A bug is automatically rated asisens.
minor based on the corresponding test predicate, itselfinay the
Taa$y provider or the predicate writer. Mrs. X allows the phone to
update itself only if the test report says no serious bugeiemd.
For interested users, the Taa®esponse may include a rating of
the software, akin to stars for products on e-tailers’ wielssi

This service would cost Mrs. X no more than a few cents, or even
be freely included in her monthly phone subscription. Evenugh
the Taag provider commissions a few dozen machines for several
minutes to run the test, this cost can be amortized acrosspfeul
users: if this same upgrade has already been tested bdferee-t
sponse to Mrs. X can be immediate and cost the provider VYiytua
nothing. As will be seen later, TaaS offers attractive opputies
for economies of scale, especially for widely used software

Since Taaf§ emphasizes simplicity, it only checks for a set of
“canned” bad behaviors, such as memory safety bugs or deadlo
Community efforts, however, are likely to produce addiéibtest
predicates, in the spirit of Wikipedia or Knol [7], perhagsskd on
bug reports filed in the past. Such a database of test predicatild
then be tapped by a Tagrovider for the benefit of its users.

The Taa§ scenario presented here is not far-fetched. We have
built a tool, called DDT [11], for testing closed-source duiy de-
vice drivers against undesired behaviors, like race cmmit mem-
ory errors, resource leaks, etc. DDT combines virtualizatiith
a specialized form of symbolic execution to thoroughly eiss
tested drivers; a set of modular dynamic checkers use test-pr
cates to identify bug conditions. In preliminary experinse®DT
tested six mature Windows-certified closed-source binamers
for less than 5 minutes each and found 14 different seriogs.bu
DDT produces executable traces for every path that lead$ait a
ure, thus proving the existence of the bugs and helping dpees
debug them. The test predicates used in DDT were extracted fr
the Microsoft Driver Verifier [14], shipped with Windows,yd a
few new ones added by us.

While Taa$; does not offer much flexibility, it is still a com-
pelling service for end users like Mrs. X, who otherwise vabul
have to blindly trust software vendors.

2.3 TaaS Certification Services

The third type of TaaS is a public certification service, vihic
provides an objective assessment of a software produc#Btyju
A primitive form of certification is already gaining hold ihé in-
dustry, as in the case of Microsoft's Hardware Quality Lastihg

a buggy upgrade may disable her phone altogether. At the sameof third-party software, or Apple’s certification process fisting

time, improved speech-to-text would help the phone betiedle
her aging voice. Mrs. X is the kind of user who can benefit from a
“home edition” version of TaaS, which we refer to as TqaS

The key difference between Taa@nd Taa$ is the service in-
terface and the presentation/interpretation of resultsveldpers
can be expected to write test predicates, but end userstcarim,
whereas Taa$ checks for both universal and application-specific
test predicates, TagSonly checks for universal predicates.

We expect end users to employ testing services in a “one-off”
manner, unlike developers who will likely prefer contingotest-
ing. Thus, Taa§ has a public website where consumers can up-
load software in binary or bytecode form and select from & pul
down menu the type of testing they want. Using this testimgise
should be no more complex than downloading software from the
Web. By default, Taa$ may check programs for bugs like buffer

applications in its App Store. TagSanalyzes software (either in
binary or source code form) and, for each defect found, pesi
irrefutable evidence of the defect. Based on the defectigyens
Taag can provide a rating for each product. For an industry to
compete on a certain product attribute, that attribute festasily
explained and quantified for consumers. It is for this reabai
software companies compete on performance (measurablegtinr
benchmarks) and on features (measurable via check lises)eA
lieve this is also the reason for which the software industry not
started yet seriously competing on reliability, safetyd aacurity.

In proposing a software certification service, we draw iremn
from Underwriters Laboratories Inc. (UL), an independeiadpict
safety certification organization in the USA. UL has had avemni
sally recognized positive effect on the manufacturing stdy en-
couraging the adoption of important safety measures.

Taa% is meant to be the Underwriters Labs of the software in-
dustry. Similar to UL, the certification service tests anertleerti-
fies (by digitally signing) the tested software—this is theigalent
of the UL Mark. The Taa§ provider can be funded by govern-
ments, by industry consortia, or simply provide certifioatser-
vices for pay. It can offer different levels of certificatichepend-
ing on the types of predicates that are checked. When a prasduc
modified, it needs to be re-tested and re-certified. In anl ilea
ture, software companies will be required to subject thefitveare
to quality validation on such a service, akin to mandatogshr
testing of vehicles. In the absence of such certificatioftwsoe
companies could be held liable for damages resulting frogs bu

An officially sanctioned TaaSprovider maintains a Web-acces-
sible directory of the software products it tested and fiedj this
list can be used by consumers to compare products. Ceitficat
of course, does not guarantee the product will perform dabgp
or that it is safe under all conditions (such as misuse), thpita-
vides an increased level of assurance. Being certified woatd
carry legal weight (as does, for instance, the European Cik bta
the FCC Part 15 requirement for electronic devices), butxpeet
that it would become difficult in practice to sell softwaratlloes
not carry such a certification. IT consulting firms may be uling
to install uncertified products, use of uncertified softwaay in-
validate certain insurance coverages, and governmeritabrities
could require contractors to use exclusively certifiedvsafe.

In addition to certification, a TaaSprovider could also pub-
lish sorely needed statistics on software: Which bugs arertbst
prevalent? What is their frequency? What is the typical bergsity
for each class of applications? Such data would help evergon
ing research on reliability (systems, databases, progiagtan-
guages, etc.), the same way surveys and studies help theahedi
profession and the pharmaceutical industry. It would endi# de-
velopment of more scientific and rigorous approaches tovené
development, grounded in concrete data.

3. INFRASTRUCTURE AND SOFTWARE

Automated testing relieves humans from the task of writesj t
cases and workload drivers. For such a testing technique feas
sible for TaaS, it must be able to control program execusorthat
it takes the program through as many different executiohspas
possible, and be able to automatically recognize undebiebdv-
ior along those paths, i.e., find bugs. Even if a techniquaaan
determine 100% that a system is bug-free, by exploring anbst
tially more execution paths than what a human-written tesic
do constitutes a valuable service for developers and end.use

There are several ways to construct such automated testing s
vices. In our work, we use a technique called symbolic execu-
tion [10] combined with test predicates. We are working orapa
lelizing symbolic execution on large, elastic clusters @fcimnes,
in order to allow it to scale up to realistically sized pragsa Other
techniques, such as structured input generation [15]cdratun in
parallel on shared-nothing clusters, can also be deploy&das.

Classic Symbolic Execution

Symbolic execution is a technique for automated testirigirally
proposed in the 1970s. It has recently been shown to find (with
no human assistance) bugs that were missed by manual tasting
static analysis [4, 6, 12, 1]. Instead of running the proguaith
regular inputs, a symbolic execution engine runs the progwrth
abstract, symbolic inputs that are unconstrained, e.ginteger
input x is given as value a symbdl that can take on any integer
value. When the program encounters a branch that depenxls on
program state is forked to produce two parallel executions,fol-

void write(int p){
if (p < MAX) {
if (p > 0)

else {
}
} else {
if (p > 3)

close(p) ;
else {

Figure 1: Symbolic execution tree for an example body of code

lowing the then-branch and another following the else-tinaiThe
symbolic values are constrained in the two execution clepess to
make the branch condition evaluate to true (e\g.0), respectively
false (e.g.A >0). Execution recursively splits into sub-executions
at each relevant branch, turning an otherwise linear ei@tutto

an execution tree that captures all possible executioggI(Eil).

Symbolic execution consists of systematically explorinig ex-
ecution tree. Each inner node is a branching decision, add ea
leaf is a program state that contains its own address spaggam
counter, and set of constraints on program variables.

When an execution encounters a bug, as defined by a test pred-
icate, the conjunction of constraints collected from thet to the
goal leaf is solved to produce concrete program inputs ttetese
the path to the bug. In addition to these constraints, progneents
(such as thread context switches) must be factored in,estréited
in our execution synthesis system [18]. Herein lies thengiite of
symbolic execution: it can automatically generate tesesdbat
evidence bugs. Symbolic execution is substantially madiieieft
than exhaustive input-based testing—it analyzes codevimifar
entire classes of inputs/events at a time, without havirtgyteach
one out—yet is at least as complete.

Unfortunately, symbolic execution faces two serious @mjes:
high memory consumptioand CPU-intensive constraint solving
both of which are roughly exponential in program size. Memor
consumption results from the large (potentially infinitgnbolic
execution tree. CPU consumption results from the fact that,
each branch instruction, the symbolic execution engine oheck
which of the branches are feasible, given the current caimss:
Consequently, on a present-day computer it is only possititeor-
oughly test programs with a few thousand lines of code; figda
programs, only the shorter paths can be explored. Thus, @ianb
execution is virtually unheard of in the general-purposivsre
industry because real programs often have millions of lofesde,
and executing them symbolically on a single node is not palct

Symbolic Execution in the Cloud

We are building Cloud9, aarallel symbolic execution engine to
run on large shared-nothing clusters of computers, thuselsang
their aggregate memory and CPU resources. In this way, we can
mitigate the memory and CPU bottleneck of symbolic executio

Parallelization is a natural way to improve the scalabiitgym-
bolic execution, but doing so in a cluster presents sigmifichal-
lenges. Furthermore, in a cloud setting, parallel symhmiecution
requires coping with frequent fluctuation in resource duadivail-
ability, and cost, which are not present in regular clusters

Cloud9 consists of many worker nodes and one or more coor-
dinator nodes. Each worker independently explores a sailotre

the program’s execution tree by running one classic syrolmlt

ecution engine and a constraint solver on each CPU core. As it

explores paths, Cloud9 checks whether any bug predicageriar

The choice of which branches to pursue first is governed by a so
called search strategy. In the cloud version of symbolicetien,
instead of using a single strategy, we simultaneously eyrefmrt-
folio of multiple strategies. This allows the exploratianspeculate
on the promise of certain paths, taking advantage of thetlfett
speculation requires solely employing a few additional niraes.
Our preliminary results indicate that diversification opktation
strategies can help find sooner the paths leading to a ddsised
goal (such as maximizing code coverage, testing the bounal$ o
string copy operations, etc.) [3]. This is particularlyenant for
symbolic execution trees of infinite size.

One key aspect of making Cloud9 scale to large clusters is per
forming efficient load balancing at infrequent time intdsvaThe
coordinator reasons about which parts of the executioncught
to be transferred between workers to distribute load eveZigud9
employs a discrete job model that allows workers to seltae,
thus requiring the intervention of the coordinator relalyvrarely.
To balance load, workers exchange compact encodings ofdices
and quickly reconstruct the state of the migrated node,auithav-
ing to copy potentially hundreds of MB/state across the netw

Another important aspect is the quality of the program state
coding. Since most cloud clusters employ commodity netvilork
terconnects, transferring explicit states over the netwéten turns
into a bottleneck (which is one of the reasons why paralledi@ho
checkers have a hard time running on clusters without shraesd-
ory). Additionally, we are developing techniques for reidacre-
dundancy, handling worker failures, and coping with hegerwity.

Since symbolic execution is a dynamic testing techniquieast
no false positives. This means that bugs found by a TaaScecaxe
legitimate bugs accompanied by inputs and a set of systenieve
that help reproduce them. A recent study [8] showed that tdick
false positives and the ability to reproduce bugs not ondlg &iut
also compels software developers to fix bugs sooner.

When testing software that depends on hardware features, a:
is the case of device drivers or a mobile phone operatingsyst
it may appear necessary for the TaaS provider to employ hard-
ware simulators. However, this challenge can be circunacewith
symbolic hardware. DDT [11] showed that this approach megui
neither real hardware nor hardware models to test devigerdr—
instead, symbolic hardware returns symbolic values todftevare,
thus testing it against all possible reactions of the hardwa

Infrastructure

We expect TaaS providers to either operate their own datisgn
or provide TaaS as a value-added service on top of a publiciclo
operated by a third party, such as Amazon EC2.

TaasS in public clouds is an ideal solution for small and mediu
companies, which cannot afford the upfront investment tifrge
up large clusters of machines. Moreover, even for large eemp
nies that do have their own clusters, TaaS can provide a wag-to
commodate spikes in their resource needs (“cloud burstisgth
as may be required during intensive test cycles prior to eass.
Finally, TaaS can provide an incremental path to graduatbyen
testing from in-house under-provisioned clusters intodbed.

Besides public clouds, there are two other available vegian
private clouds and cooperative clouds. A private cloud may b
preferred by large companies that have vast hardware Eour
they can dedicate to internal use (e.g., Google, Microsdtyo-
operative test cloud is a federation of user machines (ainhd
SETI@home) or even data centers, pooled together for shaeed

4. THE ECONOMICS OF TaaS

We believe TaaS can be operated in a sustainable manner both
as a public service and as a business. In this section we #rgtie
there exists a market for automated test services, we sugges-
sible pricing scheme, and finally describe how TaaS prosiesth
public and commercial) can benefit from economies of scale.

Like most Web services, TaaS will first attract the “long’tail
potential users; in this case, it would be those who canrstifyun-
vesting in testing infrastructures, or those who wish taidiburst
during periods of intense testing. Small and medium busegs
as well as open-source software developers, will likelyHsefirst
users. TaaS puts at their disposal a testing service on plar(ovi
better than) what the largest software companies have |ehak
ling the playing field. Large companies that already own gigv
clouds can run TaaS as an internal service.

Commercial TaaS providers will have to identify good precin
schemes. Ideally, customers pay proportionally with tHeevéhey
derive from the testing task they submit to the service. Vhlge
can be expressed as a function of the number and importance of
the bugs found and/or the confidence that the user gets irotle ¢
Confidence can be expressed in terms of code coverage or path
coverage, both of which can easily be measured by the testing
vice. Alternatively, one may wish to pay per bug found or peit u
of coverage increase—in these cases, the marginal valueages
over time. For example, achieving an extra 1% coverage oa cod
that is already 95% covered is more valuable than if theistart
coverage was only 60%. This telescoping marginal value nestc
well the increased resources (and thus higher cost for tag dp-
erator) required to achieve that target.

TaaS users can provide a target level of desired coveragerand
an upper limit on the budget, and the testing service camgzi
accordingly. Since the service provider can allocate nessuelas-
tically across its customers, the resource demands of eating
task can be optimized globally across all in-progress tdxst. |

For price-sensitive customers, auction-style pricinggesobs may
be advantageous: depending on how much the user is willing to

Spay, more or fewer resources can be commissioned in the cloud

for that user’s task. The difference in price may be refleatatie

total time required to test a piece of software, taking longé

uses fewer resources, perhaps even being suspended fopseme
riod of time when there is high demand for resources fromrothe
higher-paying customers. Such a mechanism is a good match fo
auction-based clouds, like Amazon’s EC2 Spot Instancegrevh
unused cluster nodes can be employed at very low cost. Perhap
cloud operators will be willing to donate resources to a jouzr-

sion of TaaS, during periods of low utilization.

TaaS providers benefit from economies of scale. First, users
are likely to end up testing common bodies of code, like popu-
lar libraries (e.g, many Java programs will use the same JDkg
TaasS provider can exploit this redundancy by not re-testiready-
tested code, and thus saving resources. The more usersi@serv
has, the more exploitable redundancy there will be. Moredhe
provider may choose to test popular bodies of code in adyaluce
ing periods when its resources are not in high demand. Thalini
cost of testing can then be amortized over all the customés w
will need those results later on.

Finally, TaaS may introduce new business opportunities eko
ample, rigorous testing can make it feasible to offer softwaar-
ranties, which translate into liability payments to thetsafre user
in case bugs lead to losses. Such warranties could be bagked b
insurance products from financial institutions, which veboffer
software developers an insurance policy in exchange fogrijom
and a requirement that they use TaaS on their code.

5. IMPACT AND CHALLENGES 6. CONCLUSION

We expect TaaS to have broad impact on end users, developers, In this paper we made the case for TaaS—automated software
and businesses, leading to higher software reliabilityeinegal. testing as a cloud-based service. We presented threeslafdsst-

TaaS can both compel and help development organizations toing services: Taag$ for developers to more thoroughly test their
compete based on the reliability of their software produ@srti- code, Taaf for end users to check the software they install, and
fication services provide easily accessible means for coassito Taa$ certification services that enable consumers to choose@mon
compare product reliability, while testing services hedpelopers software products based on the products’ measured rélyabil
write better software. The ease of identifying and reprauybugs We argued that the combination of recent advances in test au-
will also shorten the interval between detection and fingl fix tomation and the availability of compute clouds can offepnaece-

At the same time, testing services empower end users to checkdented levels of testing quality. We find TaaS to be compgllin
the software they use. Well informed and demanding useds wil from both technical and non-technical points of view. By slta-
further exert pressure on vendors to produce reliable sogwal- neously empowering consumers to make educated choicessand a

idation of software could become a built-in feature of ofiagasys-
tems, that transparently checks all new software via a Teasder.

The fact that competitors and hackers could use TaaS to find
weaknesses in a software product as soon as it is releaseldl sho
compel developers to use TaaS before releasing their seftwa

On the path to TaasS, there are both technical and non-tehnic
challenges. The first and foremost is finding ways to scale-aut
matic testing techniques to hundreds or thousands of meshin
loosely coupled clusters. While progress has been madex#on-
ple, in parallelizing model checkers for multi-core CPU§ e
reliance on shared memory makes the techniques difficuliriy ¢
over to clusters. Furthermore, cloud environments presgrgtan-
tial heterogeneity and unpredictability of performance.

Finding incremental testing techniques, which reuse iexjséest
results and compose them with tests focused on new or modified
code, can enable Tag3o provide quicker feedback to developers.
There is also opportunity for techniques that provide pesgive
refinement of the test results, so that a coarse grainedt resul
be returned immediately, followed by increasingly morecgze re-
sults, as they become available.

For test predicates to be easy to formulate and maintain, ug m
design a language that provides a suitable tradeoff betwegen
pressiveness and complexity. Formal logics are powertilhbve
proven to be inaccessible to most programmers. Assertdistiit
rectly in the programming language are easy, but less palveXf
middle ground between the two will likely prove the most ffuwii.

We need metrics for quantifying the level of confidence we get
from a test suite. Common coverage metrics, such as linercove
age, do not accurately describe how many of the possiblaigrec
paths have been tested. At the same time, an absolute numaber i
cating the number of paths tested is not informative eitd, path
coverage can rarely be expressed as a percentage, sincéexomp
programs almost always have an infinite number of possititespa

We expect much of the testing in TaaS to be done on binaries,
rather than source code. Both Cloud9 and DDT can operate-on bi

naries as well as on source. However, software vendors may be

reluctant to allow end users to check the quality of propriesoft-
ware using TaaS—they might prevent this through code pgckin
or through licensing terms. It is not clear whether TaaS iplerg
would need to have a license for the software they are abdasto
Moreover, exhaustively exercising code paths in binariay tve
considered illegal reverse engineering by some venddisuih
user demand for reliable software may change that perspecti
Finally, providing confidentiality of tested code may alse &
challenge. While this is not necessary in the case of bisapi-
prietary source code will need to be kept confidential byegitbn-
ning Taa$S in a private cluster, or by providing strong guegesand
legal provisions if doing so on a shared cloud. There can ladso
concerns regarding export restrictions, if sensitivevgaife, such
as cryptographic algorithms, ends up being tested by saper-
ating in countries where that code cannot be legally exgdre

enabling developers to build better products, TaaS hastredi-
ents to indeed help reduce bug density by an order of magnitud

7. REFERENCES

[1] C. Cadar, D. Dunbar, and D. R. Engler. KLEE: Unassisted
and automatic generation of high-coverage tests for comple
systems programs. Bymp. on Operating Systems Design
and Implementatior2008.

C. Cadar, V. Ganesh, P. M. Pawlowski, D. L. Dill, and D. R.

Engler. EXE: Automatically generating inputs of death. In

Conf. on Computer and Communication Secu2906.

L. Ciortea, C. Zamfir, S. Bucur, V. Chipounov, and

G. Candea. Cloud9: A software testing serviceWarkshop

on Large Scale Distributed Systems and Middlewa@®9.

P. Godefroid, N. Klarlund, and K. Sen. DART: Directed

automated random testing. @onf. on Programming

Language Design and Implementati@®05.

P. Godefroid, M. Y. Levin, and D. Molnar. Automated

whitebox fuzz testing. Technical Report MSR-TR-2007-58,

Microsoft Research, 2007.

P. Godefroid, M. Y. Levin, and D. Molnar. Automated

Whitebox Fuzz Testing. IhNetwork and Distributed System

Security Symp2008.

Google Knol. http://knol.google.com.

P. J. Guo and D. Engler. Linux kernel developer respotses

static analysis bug reports. WISENIX Annual Technical

Conf, 2009.

G. J. Holzmann and D. Bosnacki. Multi-core model chegkin

with SPIN. Inintl. Parallel and Distributed Processing

Symp, 2007.

[10] J. C. King. Symbolic execution and program testing.
Communications of the ACM976.

[11] V. Kuznetsov, V. Chipounov, and G. Candea. Testing
closed-source binary device drivers with DDT.USENIX
Annual Technical Conf2010.

[12] R. Majumdar and K. Sen. Hybrid concolic testing.livl.
Conf. on Software Engineering007.

[13] S. McConnellCode CompleteMicrosoft Press, 2004.

[14] Microsoft. Driver verifier.
http://www.microsoft.com/whdc/DevTools/tools, 2009.

[15] S. Misailovic, A. Milicevic, N. Petrovic, S. Khurshiénd
D. Marinov. Parallel test generation and execution with
Korat. InSymp. on the Foundations of Software E2§07.

[16] Redhat security.
http://lwww.redhat.com/security/updates/classifiaat2005.

[17] D. Saff and M. D. Ernst. Reducing wasted developmenétim
via continuous testing. Imtl. Symp. on Software Reliability
Engineering 2003.

[18] C. zamfir and G. Candea. Execution synthesis: A tectaiqu
for automated debugging. EUROSYS Conf2010.

(2]

(3]

(4]

(5]

(6]

[7]
(8]

9]

